Saturday, September 14, 2024
Useful Resources for Brilliant Manufacturing, Operational & Industrial Intelligence Technology Enthusiasts!

Automation, Control & Plant Intelligence - Articles, Analysis, Reviews, Interviews & Views

Industry 4.0 and Fork Truck Free

by Ryan Brown and Ed Brown   |   January 17, 2019



The concept of Fork Truck Free (FTF) is not mentioned in the graphic above, yet it is addressed in each element. Let's look more closely.

Integrated supply chain management utilizing FTF initiatives are indeed revolutionizing the way products are designed, produced, and delivered while maximizing efficiencies and savings with a connected supply chain. Steps walked throughout a plant or repetitive fork truck runs back and forth are eliminated with mother-daughter carts. Mother-daughter carts are an industrial cart system consisting of one large mother cart and two or more, smaller daughter carts. The daughter carts are designed to fit within the mother cart's framework. Once inside, the daughter carts are locked into the mother cart. The mother cart and daughter carts are then able to be tugged as one. Daughter carts are often different types of carts.

One mother cart can be designed to carry a static cart as a daughter cart and a rotation cart as a daughter cart. The Mother Daughter Cart System is a very flexible, effective cart system. It facilitates an integrated supply chain by bringing products to the line as needed, increasing efficiencies. Prescriptive analytics are also part of an FTF initiative. By maximizing outcomes based on predictive analytics ensures optimal uptime and sustained performance. Carts are delivering a high-level material flow, bringing the right product to the line at the correct time.

Real-time visibility allows carts to be monitored and reduce (even eliminate) fork truck utilization. Insightful decision-making becomes possible in the FTF space because all raw materials, finished goods, are delivered to a manufacturing cell or shipping dock precisely as needed. Zero wait-time is accomplished which eliminates downtime, improves labor efficiency, and ensures maximum productivity.

FTF initiatives are an extension of Industry 4.0.
Because Industry 4.0 is an extension of both the engineer and IT, the ability to properly sequence production becomes an automated exercise. Industry 4.0 represents the way in which FTF initiatives capture the convergence of the digital and physical worlds-including information technology and operations technology.

This transformation of the supply chain increasingly shifts from linear, sequential supply chain operations to an interconnected, open system of supply operations allowing manufacturers to fully realize the digital supply network.

This is not a panacea, however when starting with the FTF initiatives, manufacturers are better prepared to unlock several capabilities including horizontal integration through the myriad operational systems that power the organization; vertical integration through connected manufacturing systems; and end-to-end, holistic integration through the entire value chain.

A new manufacturing line can produce one product and up to 25 variants, with a ten percent increase in productivity and a 30 percent decrease in inventory by using Industry 4.0 technologies.

While productivity, throughput, and operational efficiency are an obvious outcome of FTF initiative, the prognosis of Industry 4.0 to transform manufacturing operations far exceed the initial benefits of productivity. Flexibility, quality, and speed are natural consequences achieved as organizations use FTF initiatives to become best-practice manufacturers.

Driving Safety
Manufacturing plants operating under Industry 4.0 and FTF principles presents an opportunity for dramatic safety improvements if handled correctly. Reconfiguration of production areas at short notice, involving the rapid changes of tooling and even the physical movement of equipment, can pose a range of safety challenges. Each new production configuration entails a separate risk and safety assessment.

A range of devices can be fitted onto equipment capable of detecting and reporting operator behavior which may pose a risk to safety. This equipment can take a number of forms; among the most common are intelligent cameras which gather digital images or footage and pass these to a central control point, automatically highlighting any abnormal behaviors such as entry into a restricted area. Many systems designers also opt to equip their machines with safety sensing devices which can immediately sense if a human operator has moved into an unsafe area or positioned themselves too close to a particular piece of plant. The default response is usually to power down the machine or, in the case of a collaborative robot, to slow down to a safe speed, allowing the individual time to move away from the hazard. In the case of carts, these calculations are embedded in the design to ensure a runaway cart cannot happen.

With the single largest cause of injury on a manufacturing plant floor being a fork truck, reducing or eliminating this machinery may prove the most efficacious solution to safety improvement metrics. Bringing human performance and safety into the mix can extend situational awareness beyond the knowledge of assets and equipment and a person's geo-location and skillset. Industry 4.0 combined with FTF enables operational decision-makers to executive optimal safety behaviors.

While fork trucks have been the machinery causing the most harm on a manufacturing plant floor, new Industry 4.0 metrics now overlay physiological and biomechanical data with workplace data (hours worked, tasks conducted, welfare records, etc.) and run advanced analytics incorporating machine learning, and allow floor supervisors to recognize when floor workers are reaching a point of physical or mental harm.

Automated Material Handling Proves Best Integration of Industry 4.0 and FTF

Automated material handling in the FTF environment creates a more efficient material workflow that exceeds expectations with minimal overhead. Self-driving vehicles tug a string of connected carts increasing throughput by automating pick up, drop off, and transport, executing put-away, cross-docking, replenishment, and all other point-to-point deliveries. The industrial carts and tuggers are infrastructure free, adaptable, and scalable to operational, seasonal, and production shifts and re-tooling. Safety is not compromised because vehicles and carts are safely navigated around obstacles and alongside workers.

FTF is particularly useful as a total fulfillment solution combining the strengths of humans and robots with real-time Industry 4.0 intelligence. By automating piece picking, cart picking, and case picking operations industrial strength Topper carts deliver totes, cases, and pallets autonomously.

Fork Truck Free and Industry 4.0 Exceeds Throughput Goals
Guided vehicles can be easily programmed by manufacturing plant floor staff to perform exactly as trained each and every time, running a 24/7 three shift operation. Topper Industrial has a string of carts behind AGVs (automated guided vehicles) eliminating costly downtime and increasing throughput productivity. All part of the FTF (Fork Truck Free) initiatives and integration with Industry 4.0 methodologies, both AGV and cart consistency is critical to meeting and exceeding throughput goals.

Industry 4.0 and FTF are about smart machines and smarter materials handling. Industry leaders are investing in sensor-equipped technologies that capture data and allow them to monitor material flow in real-time. Since most automated guided vehicles are now connected to the Internet, data-rich sensors collecting predictive data, self-driving vehicles are an extension of Industry 4.0, FTF and lean initiatives.

Industry 4.0 FTF and Material Flows
Individually customized or mass-produced custom products require more items to be managed as well as leaner material flows. These factors exponentially increase the complexity of logistics. Nearly half of manufacturing disruptions are due to problems with materials - wrong or defective part, missing parts, or unavailability of parts during production.

State-of-the-art factories are preparing for the increase in logistic complexity, which is evident as there is a boom in warehouse automation and warehouse management systems (WMS). These companies know that the old methods will not apply in the new environment and mother/daughter carts are better equipped to handle frequent deliveries and in smaller quantities. More precision and efficiency in receiving, drives the impact of material flow efficiency from suppliers; this improves using ASN messages (advanced ship notices). Whether at a plant or manufacturing cell, line works must know what item is arriving and the corresponding shipping units.

Moving materials to manufacturing requires flexibility, efficiency, and speed. The increased number of SKUs makes the traditional 'installer picks' approach impossible or at least inefficient. Assembly is moving toward 100 percent picking. Supermarket picking may be one step on the way, but the increased use of warehouse automation and number of SKUs is pushing toward warehouse to manufacturing picking. Picking for manufacturing has clear advantages in speed, quality, and efficiency.

All predictions and analyses expect a rapid transition toward the Industry 4.0 vision. Twenty-five percent of the manufacturing industry believes that over 30 percent cost savings will be realized.

Intralogistics 4.0 and Fork Truck Free Combined a Real Paradigm Shift with Work Force Shortage

Workforce scarcity further accelerates the trend driving the transition to Intralogistics 4.0 and FTF. According to the U.S. Census Bureau, 60 million "Baby Boomers" will exit the workforce by 2025, while only 40 million new workers will enter the job market. The cost of finding, training, and retaining increasingly scarce labor is about to reach a tipping point. With labor being a substantial portion of operating budgets, escalating labor costs have a significant impact on margins. Skill gaps in the workforce include problem-solving abilities, situational response expertise, abstract reasoning, and even basic work ethics. And there is no indication these trends will be reversed.

This paradigm shift in intralogistics, automation, integrating, managing, and optimizing the logistical flow of material goods with the flow of information within the walls of a fulfillment center, distribution center (DC), or warehouse represent the tremendous opportunity for businesses to tap potentials. Improving efficiency, transparency, and productivity in the supply chain is possible by intelligently networking elements in the logistics system, logging massive amounts of data, learning from conditional results, and adapting system behaviors.

By 2025, the intralogistics industry must be capable of supporting a highly diverse set of order and distribution channels in keeping with mass customized products and delivery methods. Customers expect deliveries of customized product anywhere at any time, placing fierce demands on DCs for faster throughput. Industry 4.0 data driven approach when combined with FTF will play an integral role.
Read more about Founder of Topper Industrial, Ryan Brown and Ed Brown. Click here.

YOU MAY LIKE:
Popular Articles

Manufacturing Insights